Reader Open Examples
v1.6

Table of contents

About

Platforms

Windows
Communication types
Architectures supported
Libraries

UWP (Universal Windows Platform)
Communication types
Architectures supported
Libraries

Linux
Communication types
Architectures supported
Libraries

MacOS
Communication types
Architectures supported
Libraries

Android
Communication types
Libraries

i0S
Communication types

ReaderOpen()

About

Algorithm

Changes

ReaderOpenEx()
About
Parameters

Reader type

~N O (o I@) TR © 2 R © » IR © 2 B O » R O B © 2 B ©) S © 2 B ©) (R © 2 B ©) Y R n R S B D e

00 00 N N

Port name
Port interface
Additional argument (arg)
Examples
Serial port
FTDI
UDP
TCP
Android internal NFC
BLE
Android
i0S
BT Serial
Android
Additional notes (BT & BLE)

Revision history

O O O OV 0 W

10
10
10
10
10
10
10

1

About

Starting with uFCoder library version 5.0.61 major changes to port open procedure have been introduced.
In particular, ReaderOpen() method from our API has been refactored & expanded, and as such it now
contains multiple steps when trying to open a port for communication between the host and the uFR Series
reader(s). The more advanced method, ReaderOpenEx() has had minor bug fixes and changes, however it
still works as intended - based on parameters provided.

Platforms

Windows

Communication types

Supports both FTDI communication & serial communication for cable connection, along with UDP/TCP for
uFR Online series readers only.

Architectures supported
Xx86, x86 64,

Libraries

Directory “ufr-lib/windows” contains both static & dynamic libraries for the supported architectures.

UWP (Universal Windows Platform)

Communication types

Supports serial communication only.

Architectures supported
ARM, x86, x86_64

Libraries

In addition to “uFCoder” libraries, “uwp-serial” libraries act as dependencies so the presence of both
libraries is mandatory. UWP projects require specific capability for serial communication to be enabled.
Refer to "Using uFCoder library on UWP" document for more details.

https://www.d-logic.com/code/nfc-rfid-reader-sdk/ufr-doc/blob/master/Using_uFCoder_library_on_UWP.pdf

UWP libraries for the supported architectures are located inside the “ufr-lib/windows/uwp” directory.

Linux

Communication types

Serial communication for “/dev/ttyS*" ports, serial communication for “/dev/ttyUSB*" ports if “ftdi_sio”
module is present, FTDI communication is available only if “ftdi _sio” module is not present/blacklisted,
UDP/TCP communication for uFR Online series readers.

Architectures supported
x86, x86 _64, ARMel, ARMhf, ARM64 (aarch64).

Libraries

Directory “ufr-lib/linux” contains both static & dynamic libraries for the supported architectures.

MacQOS

Communication types

Serial communication, FTDI communication.

Architectures supported
x86_64 only.

Libraries

Directory “ufr-lib/macos” contains both static & dynamic libraries for the supported architecture.

Android

Communication types

FTDI communication for uFR devices via OTG cable, Android internal NFC (APDU commands only), Sunmi
devices (NFC, PSAM slot), Nexgo devices (contact card side slot, PSAM1, PSAM?2).

Libraries

As of v5.0.61 there are three different different distributions of the uFCoder Android (.aar) library:
e Android library (supports internal Android NFC only and is located in “ufr-lib/android” directory).

e Android Nexgo (supports internal Android NFC & Nexgo devices and is located in
“ufr-lib/android _nexgo” directory).
e Android Sumi (supports internal Android NFC & Sunmi devices and is located in
“ufr-lib/android _sunmi” directory)
Integration & support for more devices will be in future updates.

10S

Communication types

The i0S library currently supports uFR Nano Online reader only. It includes support for UDP, TCP, BLE
communication and usage of iOS internal NFC (APDU commands only). All of these options are available by
using the ReaderOpenEx() method with the appropriate parameters.

ReaderOpen()

About

As of uFCoder library v5.0.61, scope of ReaderOpen() method was expanded to encompass all of our most
frequent reader setups. As such it now contains 7 steps when trying to find & establish the communication
with the first available uFR Series Reader.

The purpose of these steps is the automatization of the reader open procedure. The ReaderOpen() method
will stop at the first found & successfully connected device, and as such will return UFR_OK (0) status.
Otherwise it will continue execution of the steps in this order, if no device was found with any of these
steps - UFR_READER_OPENING_ERROR status is returned.

Algorithm

ReaderOpen() order of execution is as follows:
1. uFR reader(s) with "uFR" descriptors in their product description. FTDI port with the baud rate
1Mbps, no changes to RTS (by default uFR devices have inverted FTDI RTS)
- e.g UFR Nano, uFR CS, uFR Nano Online (transparent mode, requires cable connection)

2. Serial communication, at baud rate 115200bps, this step resets the device twice, first it tries setting
the RTS to HIGH and tests the communication with the device, if this fails then it immediately sets
the RTS to LOW and tests again.

- e.g RS232 uFR Series readers, CDC readers...

https://www.d-logic.com/nfc-rfid-reader-sdk/wireless-nfc-reader-ufr-nano-online/

N o v kR

FTDI communication, at baud rate 115200bps, resets the device and tests the communication.
- e.g UFR RS232 with inverted RTS

FTDI devices at 115200bps without changes to RTS

Serial communication at 115200bps, without changes to RTS

FTDI communication at 250000bps without changes to RTS

Serial communication at 250000bps without changes to RTS

As an alternative to ReaderOpen() method, these steps can be instead executed via the ReaderOpenEx()
method, with several calls & different parameters. Examples by steps:

1.
2.

N o ukFw

ReaderOpenEx(1, “, 2, “UNIT_OPEN _RESET _DISABLE");
ReaderOpenEx(2, " 1, "READER_ACTIVE _ON_RTS_HIGH");
ReaderOpenEx(2, ", 1, "READER_ACTIVE_ON_RTS_LOW");
ReaderOpenEx(2, ", 2, "");

ReaderOpenEx(2, “, 2, “UNIT _OPEN _RESET _DISABLE");
ReaderOpenEx(2, ** 1, "UNIT_OPEN_RESET _DISABLE");
ReaderOpenEx(3, “, 2, “UNIT_OPEN _RESET _DISABLE");
ReaderOpenEx(3, “, 2, “UNIT_OPEN _RESET _DISABLE");

Changes

As of uFCoder library version 5.0.73:

Step 4 is expanded for the cases of uFR Online opening in transparent mode using these
parameters. ReaderOpen() will try to switch uFR Online from Transparent mode connection to
UDP/TCP if the device is connected to the network and has a valid IP address. If it fails, the reader
will continue communication via Transparent mode and cable connection.

As of uFCoder library version 5.0.75:

Step 1 has been expanded to try opening the device with reader reset. On UWP and other platforms.
After trying without reset, next is trying to set RTS to HIGH and tests the device again, if that fails,
finally sets RTS to LOW and tries again. This use case is included to cover the cases of testing uFR
1Mbps devices when the “ftdi_sio” module is loaded. As such the procedure is slower but has
greater success rate in finding & opening of the device(s). For Linux systems, it is recommended to
use ReaderOpenEx() for faster reader opening with valid parameters.

ReaderOpenEx()

About

More advanced method that requires the user to specify the parameters.

Parameters

Parameters for this method are:
1. Reader type
2. Portname
3. Portinterface
4. Additional argument(s)

Reader type

Used to specify device baud rate based on known types of our readers.
Supported values:

0: auto - it will iterate through different values of the baud rate (1-3). If this parameter is specified
as 0 along with port interface - ReaderOpenEx() will act as if ReaderOpen() was called.

1: uFR type (1 Mbps)

2: UFR RS232 (115200 bps)

3: BASE HD (250 Kbps)

Port name

Specifies the port by its given name. For serial communication (port interface 1), depending on the platform,
will have “COM*" on Windows, “/dev/ttyS*" (or if “ftdi_sio” is loaded, “/dev/ttyUSB*" will appear for USB
connections) on Linux, “/dev/tty.usb*” on Mac etc...

If the port interface is set as 2 (FTDI communication), the port name parameter should be the FTDI serial
number.

If this parameter is left as an empty string, the uFCoder library will try to find & iterate through available
ports on its own.

Port interface

Specifies the type of communication interfaces (defines interface which will be used when trying to connect
to the reader).
Supported values:

0: (auto) first try FTDI, then serial, if port name is not defined

1: Try serial / virtual COM port / interfaces

2: Try FTDI only communication interfaces

10: Try to open Digital Logic Shields with RS232 uFReader on Raspberry Pi (serial interfaces with
GPIO reset)

84: ('T') : TCP/IP interface

85: ('U') : UDP interface

102: ('B"): BT serial interface (Android library only)

114: ('L): BLE interface (Android library only). When uFR Online reader works in BT serial mode,
port_interface must be set to O (Except Android)

Additional argument (arg)

Used to specify additional settings when trying to establish communication. If left as empty, the default
value is assumed as "READER_ACTIVE_ON _RTS_LOW:
Supported values:
“UNIT_OPEN _RESET _DISABLE": do not reset the reader when opening
“UNIT_OPEN_RESET_FORCE" : force reset the reader when opening
"READER_ACTIVE_ON_RTS_LOW" : (default) Reset the reader when RTS is high - the reader works
when RTS is low.
"READER_ACTIVE_ON_RTS_HIGH" : Reset the reader when RTS is low - the reader works when
RTS is high.

You can specify more than one setting with space as the delimiter of the string.
If the port interface is set as 2 (FTDI communication), RTS is checked internally and will be set correctly to
reset the device, without the need to specify it through additional argument(s).

Examples

Serial port

Windows: ReaderOpenEx(1, “COMXX", 1, "");

UWP: ReaderOpenEx(1, “WINIOT:X", 1, "");

Linux:

ReaderOpenEx(1, “/dev/ttyUSBX", 1, *"); (if module “ftdi_sio” is loaded)
ReaderOpenEx(1, “/dev/ttySX’, 1, "");

MacOS: ReaderOpenEx(1, “/dev/tty.usbserial-xxxxxxx", 1, “");

FTDI

ReaderOpenEx(1, "A67M24SC", 2, "");
UWP does not support this type of communication.

UDP

ReaderOpenEXx(0, “ip_address", 85, "*);
or
ReaderOpenEx(0, “ip_address”, "U; ")

1

TCP
ReaderOpenEx(0, “ip_address”, 84, ");

or
ReaderOpenEx(0, “ip_address”, ‘T, ")

1

Android internal NFC
ReaderOpenEx(5, ", 0, "");

BLE

Android

u.n

“port_name" parameter can contain either MAC address with “:" delimiter, or uFR Online series reader
serial number (ONXXXXXX)

e.g ReaderOpenEx(0, "ONXXXXXX", 'L, “");

or

ReaderOpenEx(0, “aa:bb:cc:dd:ee:ff", 'L, *");

10S
“port_name" parameter should contain uFR Online series reader serial number (ONXXXXXX):
e.g ReaderOpenEx(0, "ONXXXXXX", ‘L, *");

BT Serial

Android

u.n

“port_name" parameter can contain either MAC address with “:" delimiter, or uFR Online series reader
serial number (ONXXXXXX)

e.g ReaderOpenEx(0, "ONXXXXXX", ‘B; "");

or

ReaderOpenEx(0, “aa:bb:cc:dd:ee:ff", 'B; "");

Additional notes

BT & BLE

Up to uFCoder version 5.0.64: uFR Online Series reader needs pairing with the Android beforehand.

As of uFCoder version 5.0.65: uFR Online Series reader no longer requires mandatory pairing with the
Android device. The user can simply provide the MAC address/serial number as ‘port_name' parameter of
the ReaderOpenEx() method, and the uFCoder library will try to find the device & connect to it. Depending on
the settings of the uFR Online reader, user will be then prompted to pair it after a successful connection.

UDP/TCP

As of uFCoder version 5.0.76: uFCoder library will rely on port 55515 for sending commands to uFR Online.
The port is now defined due to the issue with the Windows firewall not prompting the user to allow
software an exception through the Firewall when trying to communicate with the reader by using port 0
(which should automatically allocate a free port).

Nonetheless it is recommended that user allows the software an exception beforehand.

Revision history

2022-11-02 1.6 Section Additional notes updated. Sub-section
UDP/TCP added.

2022-10-27 1.5 Section Algorithm updated with changes made in
uFCoder version 5.0.75

2022-10-20 1.4 Section Algorithm updated with changes made in
uFCoder version 5.0.73

2022-03-14 1.3 Section Additional notes (BT & BLE) added.

2022-03-10 1.2 Examples updated: Android & i0S BLE. Android BT.

2022-03-08 1.1 Revision history updated. Title of the document

updated. Section Algorithm updated. Android & i0S
communication details updated.

2022-03-07 1.0 Base document

