
uFR e-Fiscalisation manual
v1.4

1

Table of contents

About 4

Usage 4
Reader Open examples 5

Android (internal NFC) 6
NexGo (contact card side slot) 7
Sunmi (PSAM slot) 8
uFR Online (UDP) 9
uFR Series reader via OTG 9

Implementation 10
Include uFCoder in Android Studio project 10
Build Gradle configuration 10

Android example walkthrough 11
Reader open 11
Get token 12
Custom APDU commands 13

Custom APDU command - Extended APDU 14

uFCoder library API example - get token minimal snippet 17

uFCoder library API example - send APDU minimal snippet 18

uFCoder library HTTP service example 19
Disclaimer 19
Usage 20
HTTP example - Get token 20
HTTP example - APDU commands 21
Starting service from another application 22

References 22
Google Play 22
Youtube 22
SDK examples 23
Documentation 23

2

R e v i s i o n h i s t o r y 24

3

About
As of version v5.0.61 of uFCoder library, support for e-fiscalization has been introduced. Communication
with Nexgo and Sunmi devices is supported by utilizing the ReaderOpenEx() function from our API.
Developers who are working on implementation of authorization via smart cards and Generic Identity
Device Specification (GIDS) specification, can utilize uFCoder API on Android devices with NFC support,
without writing additional code for interaction with internal NFC and sending APDU commands.
Additionally, uFR Series hardware can be used with Android devices, it is necessary to use uFCoder API to
make this possible. As such - NFC support on Android device(s) is not mandatory because of uFR Series
hardware.
Sending and receiving APDU commands is also supported for e-fiscalization. These are our API functions
that should be used:

● APDUHexStrTransceive
● SetISO14443_4_Mode (for uFR Series readers only)
● s_block_deselect (for uFR Series readers only)

Examples of sending/receiving APDU commands can be found in section Custom APDU commands. Along
with the short demonstration of fetching the token for e-fiscalisation under the Get token section.

Usage
Advanced parameters of the ReaderOpenEx() function from our API are used for establishing
communication with the device. Currently, our API supports: Android internal NFC along with Nexgo and
Sumni, uFR Online series readers, uFR series readers. Parameters for interacting with the supported
devices are as following:

● ReaderOpenEx 5 0 0 0 - Android internal NFC (Also supported on Sunmi V2 Pro)
● ReaderOpenEx 5 0 1 0 - NexGo contact card side slot
● ReaderOpenEx 5 0 4 0 - NexGo PSAM1 slot
● ReaderOpenEx 5 0 5 0 - NexGo PSAM2 slot
● ReaderOpenEx 5 0 8 0 - Sunmi PSAM slot
● ReaderOpenEx 1 ip_address 85 0 - uFR Online UDP connection
● ReaderOpenEx 1 ip_address 84 0 - uFR Online TCP/IP connection
● ReaderOpen - will use FTDI to try and open the device if it’s connected via OTG cable (recommended

for use with uFR series readers)

4

ReaderOpenEx function relies on the following parameters, To determine type of communication that will
be initiated, ReaderOpenEx function relies on the following parameters:
- Reader type
- Port name
- Port interface
- Additional argument.

Parameter “port name” and “additional argument”, when specified as 0, depending on platform, should
instead be passed as an empty string literal.

Reader Open examples
For uFR Series hardware, on Android, using the basic ReaderOpen() function, while the device is connected
via OTG cable, will result in almost immediate port open with FTDI.
Exception to this would be uFR Online series hardware, which contains multiple methods of communication
and requires usage of ReaderOpenEx() method, this method is also required for Sunmi/Nexgo devices.

Examples of opening the communication with the supported devices:

5

Android (internal NFC)

Selecting the ‘Telefon’ will call the following method:
uFCoder.ReaderOpenEx(5, “”, 0, “”);
Video demonstration of using Android device with internal NFC reader: https://youtu.be/b2QofrpRwHo

6

https://youtu.be/b2QofrpRwHo

NexGo (contact card side slot)

Selecting ‘Nexgo’ by default will have these parameters as input, clicking on ‘Reader Open’ with this input
will be calling the ReaderOpenEx() method as:
uFCoder.ReaderOpenEx(5, “”, 8, “”);
Video demonstration of using Nexgo reader can be found here: https://youtu.be/34rpoPHeHCA

7

https://youtu.be/34rpoPHeHCA

Sunmi (PSAM slot)

Selecting ‘Sunmi’ by default will have these parameters as input, clicking on ‘Reader Open’ with this input
will be calling the ReaderOpenEx() method as:
uFCoder.ReaderOpenEx(5, “”, 8, “”);
Video demonstration of using Sunmi V2 Pro reader can be found here: https://youtu.be/Ms3h-eqWk5A

8

https://youtu.be/Ms3h-eqWk5A

uFR Online (UDP)

For uFR Online most important parameters are ‘port_name’ which is the IP address of the device on the
network, and ‘interface’ which specifies the type of connection. This is the example of UDP connection, and
by clicking on ‘Reader Open’ it will call ReaderOpenEx() method as:
uFCoder.ReaderOpenEx(1, “192.168.1.8”, 85, “”);

For more details on uFR Online series device and it’s configuration, read more in ‘uFR Online - Quick Start
Guide’ document, that can be found here: https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-doc.git
Video on how to open uFR Online can be found here: https://youtu.be/L75l2ReA61c

uFR Series reader via OTG
Simplest method for interacting with a uFR series reader via OTG cable would be to call the ReaderOpen()
method. This method is called just by clicking on the ‘Reader Open’ button with ‘Dodatne opcije’ checkbox
unchecked and ‘µFR uređaj’ selected. By doing that, the following method is called:
uFCoder.ReaderOpen()
This method requires no additional parameters, and relies on FTDI API to establish communication with the
device. Video on how to open uFR via OTG can be found here: https://youtu.be/28af6oulv1c

9

https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-doc.git
https://youtu.be/L75l2ReA61c
https://youtu.be/28af6oulv1c

Implementation
This section will describe basic implementation of uFCoder library in Android studio and showcase function
calls necessary for getting the token.

Include uFCoder in Android Studio project
Follow the instructions below to include the library in your Android project.

1. Create new or open existing Android project.
2. Open project folder in File Explorer.
3. Navigate to ‘’<MyProject>/app’’ directory.
4. Download “ufr-lib” and rename it as “libs” inside the “/app” directory so the final path is
“<MyProject/app/libs>”

Build Gradle configuration
Follow the instructions below to configure the build gradle for using the library.

1. Open build.gradle file (the one under ‘app’)
2. Add implementation files under “dependencies”:

a. Add ('libs/android/uFCoder.aar') - contains support only for Android internal NFC;
b. Add ('libs/android_sunmi/uFCoder.aar') - which supports Sunmi devices & Android internal

NFC;
c. Add ('libs/android_nexgo/uFCoder.aar') - which supports Nexgo devices & Android internal

NFC;
3. Click on the ‘sync now’ button to sync projects with Gradle files.

10

https://www.d-logic.com/code/nfc-rfid-reader-sdk/ufr-lib.git

Android example walkthrough
First step, in almost every example in our SDK, would be utilizing ReaderOpen (or ReaderOpenEx which
requires providing advanced parameters) to open communication with the device of your choice. For the
purpose of this demo, we will use our uFR Online Series reader.

Reader open
- Select ‘µFR uređaj’ and, depending on device, select ‘Dodatne opcije’ for providing advanced

parameters and using the ReaderOpenEx(), instead of the ReaderOpen() function by default.
- Fill in the parameters according to the device type. For the purpose of this demo, we’ll start by using

the uFR Online series reader. Parameters for this use case would be as following:

Image 1. Successful ‘Reader Open’ with advanced parameters
11

https://www.d-logic.net/nfc-rfid-reader-sdk/wireless-nfc-reader-ufr-nano-online/

Code equivalent of calling ‘Reader Open’ with these parameters would be the following line in Android:
status = uFCoder.ReaderOpenEx(1, "192.168.1.8", 85, “”);

At the bottom, a message with the results of our action will appear. Successful ‘Reader Open’ would display
the message as it is on the previous image, otherwise a message with error code will be shown..

Get token
- After a successful ‘Reader Open’ we can use the rest of the software properly.
- Next option would be to get a token via the ‘Preuzmi token’ button. This requires valid input of

parameters ‘URL’, ‘PATH’, and finally ‘PIN’ which varies depending on your card. Successful result of
this action will appear as following:

Image 2. Token results.
-

12

Code necessary for execution of ‘Preuzmi Token’ is equivalent to the following snippet in Android:
byte null_cert[] = new byte[10];
status[0] = uFCoder.DL_TLS_SetClientCertificate(2, null_cert);
if (status[0] == 0) {

int[] ret_status = new int[1];
String resStr = uFCoder.DL_TLS_Request(ret_status, URL, PATH, 443, PIN);

}

Function DL_TLS_SetClientCertificate() - is used for user certificate authentication with our TLS 1.2 HTTPS
client. For more details on the DL_TLS_SetClientCertificate() method, refer to ‘uFR Series NFC reader API’:
https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-doc.git

Function DL_TLS_Request is used to transceive HTTPS GET request over TLS 1.2 secure connection,
implementing TLS/SSL user certificate authentication on server request. Request doesn’t contain HTTP
body and use minimal of the HTTP headers.

Important: After the token was received (DL_TLS_Request() method finished), the library does not use
HTTPS any further. The result, token, if successfully received - can be used at the user's discretion.
Any other operation with the token requiring HTTP/HTTPS needs to be implemented separately in the
user’s software, uFCoder library does not provide any other methods in our API for this purpose.

For more details on the DL_TLS_Request () method and our TLS support, refer to ‘uFR Series NFC reader API’:
https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-doc.git

Custom APDU commands
- Next option is the sending of custom APDU commands, based on sending initially the separate

‘Select APDU’ via ‘Pošalji Select APDU’ button, and then APDU commands based on your input via
‘Pošalji APDU komandu’ button. Card/tag must be in the reader's RF field before sending this
command.

- By default, the ‘Select’ APDU command used in this software has the following value:
‘00A4040010A000000748464A492D546178436F726500’. Successful execution yields the
following result:

13

https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-doc.git
https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-doc.git

Image 3. ‘Select APDU’ result

Custom APDU command - Extended APDU
- Important: If the ‘Select’ command was executed successfully, you should not remove card/tag

from the devices RF field. If you do, communication will be lost and the card/tag will need to be
‘Selected’ again before sending APDU commands.

- Finally, we have a demo of an extended APDU command, with the default value of
‘88040400000000’ in the input field. This command, if successful, will yield a large amount of data
in one response. The successful execution should look like this:

14

Image 4. Extended APDU command output

15

Image 5. Completed extended APDU command output

16

Transmission of both ‘Select’ command and the ‘Extended APDU’ commands demonstrated can be
done in the following manner in Android:

ret_status[0] = uFCoder.APDUHexStrTransceive(send_cmd_string, resp_string);

By using the APDUHexStrTransceive function, you can send C–APDU in the c_string (zero terminated)
format, containing pairs of the hexadecimal digits.

This software is available on the Play store:
https://play.google.com/store/apps/details?id=com.dlogic.e_fiskaltest

uFCoder library API example - get token minimal snippet

package com.dlogic.example;

import com.dlogic.uFCoder;

public class MainActivity extends AppCompatActivity {

static {
System.loadLibrary("uFCoder"); //Load uFCoder library

}

int status;
uFCoder uFCoder; //Create uFCoder class instance

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

uFCoder = new uFCoder(getApplicationContext(), this);

status = uFCoder.ReaderOpen();
// if you wish to use the internal Android NFC reader and/or use other supported devices, implement
// ReaderOpenEx with parameters you need. e.g Android internal NFC reader parameters
// status = uFCoder.ReaderOpenEx(5, “”, 0, “”);
if(status == 0x00) // if the device open was successful
{

byte null_cert[] = new byte[10];
status = uFCoder.DL_TLS_SetClientCertificate(2, null_cert);

17

if (status == 0) {
String tokenResult = uFCoder.DL_TLS_Request(status, URL, PATH, 443, PIN);
if (status == 0) {

// if the status was a valid one, handle result here
} else {

// otherwise handle errors in this segment
}

}
}

}

Full code of this snippet, as an Android example, can be found in our SDK git repository:
https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-examples-android-efiscalisation_test.git

uFCoder library API example - send APDU minimal snippet

package com.dlogic.example;

import com.dlogic.uFCoder;

public class MainActivity extends AppCompatActivity {

static {
System.loadLibrary("uFCoder"); //Load uFCoder library

}

int status;
uFCoder uFCoder; //Create uFCoder class instance

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

uFCoder = new uFCoder(getApplicationContext(), this);

int status = 0x01;
status = uFCoder.ReaderOpen();

// if you wish to use the internal Android NFC reader and/or use other supported devices, implement
// ReaderOpenEx with parameters you need. e.g Android internal NFC reader parameters

18

https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-examples-android-efiscalisation_test.git

// status = uFCoder.ReaderOpenEx(5, “”, 0, “”);
if(status == 0x00) // if the device open was successful
{

status = uFCoder.SetISO14443_4_Mode(); // this function is mandatory for uFR devices, omit if
// you’re not using uFR Series reader

if (status == 0) {
resp = uFCoder.APDUHexStrTransceive(ret_status, ApduCmd_Str);
//alternatively you can use uFCoder.APDUPlainTransceive() method for sending an APDU
// command as a byte array instead of a hex string
if (status == 0) {

// if the status was a valid one, handle result ‘resp’ here
} else {

// otherwise handle errors in this segment
}

uFCoder.s_block_deselect((byte) 100); // mandatory so that uFR reader can resume polling
// use this method when you’re finished with
//sending/receiving of APDU commands.

}
}

}
}

For more details on our API and function calls, refer to ‘uFR Series NFC reader API’:
https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-doc.git

uFCoder library HTTP service example
This feature currently only supports Nexgo and Sunmi devices and is still in development.
This feature does not support Android Internal NFC usage.
Source code can be found here: https://www.d-logic.com/code/nfc-rfid-reader-sdk/ufr-lib_http_service
For more details contact us at: mailto:support@d-logic.com

Disclaimer
Using uFCoder HTTP service apk for commercial purposes requires of user to compile their own, unique,
package name of the service apk (by default set as “com.dlogic.ufrwebstarter”). Simply change the package
name & application ID provided in the example source code, and recompile under a different package name.
Refer to “uFCoder HTTP Service” document here for more details.

19

https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-doc.git
https://www.d-logic.com/code/nfc-rfid-reader-sdk/ufr-lib_http_service
mailto:support@d-logic.com
https://www.d-logic.com/code/nfc-rfid-reader-sdk/ufr-doc.git

Usage
Install uFRHttpService.apk and start one time. Reboot device. Service will be started
automatically on device boot.
HTTP service endpoint: http://ip-address:1234 (by default).

Available commands (send plain body text):
ReaderOpenEx 5 0 1 0 - NexGo contact card side slot
ReaderOpenEx 5 0 4 0 - NexGo PSAM1 slot
ReaderOpenEx 5 0 5 0 - NexGo PSAM2 slot
ReaderOpenEx 5 0 8 0 - Sunmi PSAM slot
DL_TLS_Token host path port pin
(e.g “DL_TLS_Token api.sandbox.suf.purs.gov.rs /api/v3/sdc/token 443 8440”)
APDU “hexstring”
(e.g) APDU 00A4040009A0000003974254465900
Restart - Restarts service

HTTP example - Get token
For this demonstration Talend API Tester was used.

1. Simply send “ReaderOpenEx” with necessary parameters via HTTP as plain text:

20

http://ip-address:1234
https://chrome.google.com/webstore/detail/talend-api-tester-free-ed/aejoelaoggembcahagimdiliamlcdmfm?hl=en

Response should be in JSON format:

2. Send “DL_TLS_TOKEN” with necessary parameters:
Parameters in order are: URL, PATH, PIN.

HTTP example - APDU commands
Sending APDU commands via uFCoder HTTP service is executed in the following manner:

1. Simply send “APDU” with the APDU command as a string following the keyword in plain text format.
For example:

21

2. Response is received as JSON:

Starting service from another application
To start uFR HTTP service from another application you need to use
com.dlogic.ufrwebstarter.uFRWebService intent.

Example code:
Intent i = new Intent();
i.setComponent(new
ComponentName("com.dlogic.ufrwebstarter",com.dlogic.ufrwebstarter.uFRWebService"));
getApplicationContext().startService(i);

References

Google Play
uFR e-Fiscalisation app: https://play.google.com/store/apps/details?id=com.dlogic.e_fiskaltest
uFR GIDS demo: https://play.google.com/store/apps/details?id=com.dlogic.ufrgidsdemo

Youtube
D-Logic NFC SDK channel: https://www.youtube.com/channel/UCNYYw0iUoua3bMTJbSuaWQA
uFR e-Fiscalisation demo with Nexgo reader: https://youtu.be/34rpoPHeHCA
uFR e-Fiscalisation demo with Sunmi V2 reader: https://youtu.be/Ms3h-eqWk5A
uFR GIDS demo with uFR reader (WiFi connection): https://youtu.be/L75l2ReA61c
uFR GIDS demo with uFR reader (USB connection): https://youtu.be/28af6oulv1c

22

https://play.google.com/store/apps/details?id=com.dlogic.e_fiskaltest
https://play.google.com/store/apps/details?id=com.dlogic.ufrgidsdemo
https://www.youtube.com/channel/UCNYYw0iUoua3bMTJbSuaWQA
https://youtu.be/34rpoPHeHCA
https://youtu.be/Ms3h-eqWk5A
https://youtu.be/L75l2ReA61c
https://youtu.be/28af6oulv1c

uFR GIDS demo with Android internal NFC: https://youtu.be/b2QofrpRwHo

SDK examples
uFR e-Fiscalisation - Android source code:
https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-examples-android-efiscalisation_test.git

uFR GIDS demo - Android source code:
https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-examples-android-gids.git

uFR GIDS demo - iOS source code:
https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-examples-ios-gids.git

Documentation
All documents related to our SDK can be found here:
https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-doc.git

Important documents related to this manual:
- uFR Series NFC reader API
- uFR Online Quick Start Guide
- using uFR Android library
- using uFR library in XCode

23

https://youtu.be/b2QofrpRwHo
https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-examples-android-efiscalisation_test.git
https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-examples-android-gids.git
https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-examples-ios-gids.git
https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-doc.git

R e v i s i o n h i s t o r y

Date Version Comment

2022-12-02 1.4 Updated Get token section. Important explanation
of DL_TLS_Request() added.

2022-02-24 1.3 Updated sections: Build Gradle configuration;
HTTP example - Get token; About;
Added section: Disclaimer for uFCoder HTTP service.

2022-02-22 1.2 uFR HTTP service starting from another application
example.

2022-02-01 1.1 Additional details for Custom APDU commands
section.

2019-10-31 1.0 Base document

24

